CommencerCommencer gratuitement

Model training

Next, you will estimate a logistic response model on train.data. Therefore, you use the predictor variables that remained after model selection to explain the purchase probabilities for HOPPINESS. You investigate the train.model and compare the results to the previously fitted extended.model by using the function margins().

Cet exercice fait partie du cours

Building Response Models in R

Afficher le cours

Instructions

  • Estimate a logistic response model on train.data. Explain HOPPINESS by price.ratio, FEAT.HOP, and FEATDISPL.HOP. Use the function glm() with the family argument binomial and assign the result to an object named train.model.
  • Investigate the train.model object by using the function margins().
  • Investigate the extended.model object by using the function margins().

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

# Fit the logistic response model to train.data
___ <- glm(___, family = binomial, data = ___)

# Investigate the train.model
___

# Investigate the extended.model
___
Modifier et exécuter le code