Implementing multi-head attention
Before you dive in and begin building your own MultiHeadAttention class, you'll try out using the class to see how it transforms the query, key, and value matrices. Recall that these matrices are generated by projecting the input embeddings using linear transformations with learned weights.
query, key, and value matrices have already been created for you, and the MultiHeadAttention has been defined for you.
Este ejercicio forma parte del curso
Transformer Models with PyTorch
Instrucciones del ejercicio
- Define the attention parameters for eight attention heads and input embeddings with a dimensionality of
512. - Create an instance of the
MultiHeadAttentionclass using the defined parameters. - Pass the
query,key, andvaluematrices through themultihead_attnmechanism.
Ejercicio interactivo práctico
Prueba este ejercicio y completa el código de muestra.
# Define attention parameters
d_model = ____
num_heads = ____
# Instantiate a MultiHeadAttention instance
multihead_attn = ____
# Pass the query, key, and value matrices through the mechanism
output = ____
print(output.shape)