Designing a mask for self-attention
To ensure that the decoder can learn to predict tokens, it's important to mask future tokens when modeling the input sequences. You'll build a mask in the form of a triangular matrix of True and False values, with False values in the upper diagonal to exclude future tokens.
Este ejercicio forma parte del curso
Transformer Models with PyTorch
Instrucciones del ejercicio
- Create a Boolean matrix,
tgt_markto mask future tokens in the attention mechanism of the decoder body.
Ejercicio interactivo práctico
Prueba este ejercicio y completa el código de muestra.
seq_length= 3
# Create a Boolean matrix to mask future tokens
tgt_mask = (1 - torch.____(
torch.____(1, ____, ____), diagonal=____)
).____()
print(tgt_mask)