ComenzarEmpieza gratis

Designing a mask for self-attention

To ensure that the decoder can learn to predict tokens, it's important to mask future tokens when modeling the input sequences. You'll build a mask in the form of a triangular matrix of True and False values, with False values in the upper diagonal to exclude future tokens.

Este ejercicio forma parte del curso

Transformer Models with PyTorch

Ver curso

Instrucciones del ejercicio

  • Create a Boolean matrix, tgt_mark to mask future tokens in the attention mechanism of the decoder body.

Ejercicio interactivo práctico

Prueba este ejercicio y completa el código de muestra.

seq_length= 3

# Create a Boolean matrix to mask future tokens
tgt_mask = (1 - torch.____(
  torch.____(1, ____, ____), diagonal=____)
).____()

print(tgt_mask)
Editar y ejecutar código