Este ejercicio forma parte del curso
En este capítulo, se te presentarán los problemas de clasificación y aprenderás a resolverlos mediante técnicas de aprendizaje supervisado. Aprenderás a dividir los datos en conjuntos de entrenamiento y de prueba, ajustar un modelo, hacer predicciones y evaluar la precisión. Descubrirás la relación entre la complejidad del modelo y el rendimiento, aplicando lo que aprendas a un conjunto de datos de rotación, donde clasificarás el estado de rotación de los clientes de una empresa de telecomunicaciones.
En este capítulo, te introducirás en la regresión y construirás modelos para predecir los valores de las ventas utilizando un conjunto de datos sobre gastos publicitarios. Aprenderás la mecánica de la regresión lineal y las métricas de rendimiento más comunes, como R-cuadrado y error cuadrático medio. Realizarás la validación cruzada k-fold, y aplicarás la regularización a los modelos de regresión para reducir el riesgo de sobreajuste.
Una vez entrenados los modelos, ahora aprenderás a evaluarlos. En este capítulo, se te presentarán varias métricas junto con una técnica de visualización para analizar el rendimiento de los modelos de clasificación mediante scikit-learn. También aprenderás a optimizar los modelos de clasificación y regresión mediante el uso del ajuste de hiperparámetros.
Aprende a imputar valores perdidos, convertir datos categóricos en valores numéricos, escalar datos, evaluar simultáneamente múltiples modelos de aprendizaje supervisado y construir canalizaciones para agilizar tu flujo de trabajo.
Ejercicio actual