ComenzarEmpieza gratis

Loading PDF files for RAG

To begin implementing Retrieval Augmented Generation (RAG), you'll first need to load the documents that the model will access. These documents can come from a variety of sources, and LangChain supports document loaders for many of them.

In this exercise, you'll use a document loader to load a PDF document containing the paper, Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks by Lewis et al. (2021). This file is available for you as 'rag_paper.pdf'.

Note: pypdf, a dependency for loading PDF documents in LangChain, has already been installed for you.

Este ejercicio forma parte del curso

Retrieval Augmented Generation (RAG) with LangChain

Ver curso

Instrucciones del ejercicio

  • Import the appropriate class for loading PDF documents in LangChain.
  • Create a document loader for the 'rag_paper.pdf' document.
  • Load the document into memory to view the contents of the first document, or page.

Ejercicio interactivo práctico

Prueba este ejercicio y completa el código de muestra.

# Import library
from langchain_community.document_loaders import ____

# Create a document loader for rag_paper.pdf
loader = ____

# Load the document
data = ____
print(data[0])
Editar y ejecutar código