ComenzarEmpieza gratis

Building the retrieval chain

Now for the finale of the chapter! You'll create a retrieval chain using LangChain's Expression Language (LCEL). This will combine the vector store containing your embedded document chunks from the RAG paper you loaded earlier, a prompt template, and an LLM so you can begin talking to your documents.

Here's a reminder of the prompt_template you created in the previous exercise, and which is available for you to use:

Use the only the context provided to answer the following question. If you don't know the answer, reply that you are unsure.
Context: {context}
Question: {question}

The vector_store of embedded document chunks that you created previously has also been loaded for you, along with all of the libraries and classes required.

Este ejercicio forma parte del curso

Retrieval Augmented Generation (RAG) with LangChain

Ver curso

Instrucciones del ejercicio

  • Convert the Chroma vector_store into a retriever object for use in the LCEL retrieval chain.
  • Create the LCEL retrieval chain to combine the retriever, the prompt_template, the llm, and a string output parser so it can answer input questions.
  • Invoke the chain on the question provided.

Ejercicio interactivo práctico

Prueba este ejercicio y completa el código de muestra.

# Convert the vector store into a retriever
retriever = vector_store.____(search_type="similarity", search_kwargs=____)

# Create the LCEL retrieval chain
chain = (
    {"____": ____, "question": ____}
    | ____
    | ____
)

# Invoke the chain
print(chain.____("Who are the authors?"))
Editar y ejecutar código