Initializing the reward
You are in the final stages of deploying a generative model designed to offer personalized recommendations for an online bookstore. To align this model with human-preferred recommendations, you need to train a reward model using some collected preference data. The first step is to initialize the model and configuration parameters.
The AutoTokenizer and AutoModelForSequenceClassification were preloaded from transformers. RewardConfig was preloaded from trl.
Este ejercicio forma parte del curso
Reinforcement Learning from Human Feedback (RLHF)
Instrucciones del ejercicio
- Load the GPT-1 model,
"openai-gpt", for the sequence classification task using Hugging Face'sAutoModelForSequenceClassification. - Initialize the reward configuration using
"output_dir"as the output directory, and set the token maximum length to60.
Ejercicio interactivo práctico
Prueba este ejercicio y completa el código de muestra.
# Load the pre-trained GPT-1 model for text classification
model = ____
tokenizer = AutoTokenizer.from_pretrained("openai-gpt")
# Initialize the reward configuration and set max_length
config = ____(output_dir=____, max_length=____)