ComenzarEmpieza gratis

Mitigating negative KL divergence

You were fine-tuning the model using RLHF techniques and noticed that the model's performance has worsened compared to the base model. You suspect this is due to negative KL divergence, so you want to set the correct generation parameters to prevent this issue.

The tokenizer has been pre-imported.

Este ejercicio forma parte del curso

Reinforcement Learning from Human Feedback (RLHF)

Ver curso

Instrucciones del ejercicio

  • Set top_k and min_length to values that help avoid KL divergence.

Ejercicio interactivo práctico

Prueba este ejercicio y completa el código de muestra.

generation_kwargs = {
    # Set min length and top k parameters
    ____, 
  	"top_p": 1.0,
  	"do_sample": True,  
  	"pad_token_id": tokenizer.eos_token_id, 
  	"max_new_tokens": 32}
Editar y ejecutar código