Row-binding future_map results
You work for a higher studies consultancy which recommends US universities to applicants abroad. You have sourced a university ranking dataset which contains a column score for research, citations, etc, for different universities.
The team statistician has written a function, calc_quants(), that is available to you. This function calculates a range for the scores of a given university. It takes two arguments, 1) a data frame with the column score, and 2) the quantile values of interest q_values. The quantiles of interest are available to you as the variable my_q_values.
my_q_values <- c(0.025, 0.975)
You are asked to apply this function to the data for each university in parallel.
furrr and tidyverse have been loaded for you.
Este ejercicio forma parte del curso
Parallel Programming in R
Instrucciones del ejercicio
- Create a configuration that specifies
my_q_valuesas a global variable required by all workers. - Split the data frame
uni_databyuniversity_name. - Apply
calc_quants()to each university's scores using the correctfuture_map()variant to bind results by rows. - Specify the values for the
q_valuesand configuration for.options.
Ejercicio interactivo práctico
Prueba este ejercicio y completa el código de muestra.
plan(cluster, workers = 6)
# Create a configuration object to export global variables
config <- ___(___ = ___)
uni_data %>%
# Split the data frame
___(___) %>%
# Specify the future_map variant and the function to map
___(___,
# Specify values for the q_values argument and configuration for .options
q_values = ___,
.options = ___,
.id = "university")
plan(sequential)