Web-friendly table
Now let's make the table in the last example more web-friendly.
Este ejercicio forma parte del curso
Building Dashboards with flexdashboard
Instrucciones del ejercicio
- Add a table in the Station Usage chart that contains the data in
station_trips_df, using thedatatable()function. - Knit and expand the HTML viewer to explore the resulting table. Try sorting on the Gap column, searching for all the Caltrain stations, and going from page to page.
Ejercicio interactivo práctico
Prueba este ejercicio y completa el código de muestra.
{"my_document.Rmd":"---\ntitle: \"Bike Shares Daily\"\noutput: \n flexdashboard::flex_dashboard:\n orientation: columns\n vertical_layout: fill\n---\n\n```{r setup, include=FALSE}\nlibrary(flexdashboard)\nlibrary(readr)\nlibrary(tidyverse)\nlibrary(lubridate)\nlibrary(plotly)\nlibrary(knitr)\nlibrary(DT)\n\ntrips_df <- read_csv('https://assets.datacamp.com/production/course_6355/datasets/sanfran_bikeshare_joined_oneday.csv')\n```\n\nColumn {data-width=650}\n-----------------------------------------------------------------------\n\n### Station Usage\n\n```{r}\n\nstation_trips_df <- trips_df %>%\n select(start_station_name, end_station_name) %>%\n pivot_longer(cols = start_station_name:end_station_name, names_to = 'Type', values_to = 'Station') %>%\n group_by(Station, Type) %>%\n summarize(n_trips = n()) %>% \n mutate(Type = ifelse(Type == 'start_station_name', 'Trip Starts', 'Trip Ends')) %>%\n pivot_wider(names_from = 'Type', values_from = 'n_trips') %>%\n replace_na(list(`Trip Starts` = 0, `Trip Ends` = 0)) %>%\n mutate(Gap = `Trip Ends` - `Trip Starts`)\n\n```\n\n\nColumn {data-width=350}\n-----------------------------------------------------------------------\n\n### Median Trip Length\n\n\n### % Short Trips\n\n\n### Trips by Start Time\n\n\n"}