ComenzarEmpieza gratis

Rasa NLU

In this exercise, you'll use Rasa NLU to create an interpreter, which parses incoming user messages and returns a set of entities. Your job is to train an interpreter using the MITIE entity recognition model in Rasa NLU.

Este ejercicio forma parte del curso

Building Chatbots in Python

Ver curso

Instrucciones del ejercicio

  • Create a dictionary called args with a single key "pipeline" with value "spacy_sklearn".
  • Create a config by calling RasaNLUConfig() with the single argument cmdline_args with value args.
  • Create a trainer by calling Trainer() using the configuration as the argument.
  • Create a interpreter by calling trainer.train() with the training_data.

Ejercicio interactivo práctico

Prueba este ejercicio completando el código de muestra.

# Import necessary modules
from rasa_nlu.converters import load_data
from rasa_nlu.config import RasaNLUConfig
from rasa_nlu.model import Trainer

# Create args dictionary
args = ____

# Create a configuration and trainer
config = ____
trainer = ____

# Load the training data
training_data = load_data("./training_data.json")

# Create an interpreter by training the model
interpreter = ____

# Test the interpreter
print(interpreter.parse("I'm looking for a Mexican restaurant in the North of town"))
Editar y ejecutar código