Plotting mean frequency
Lastly, we'll create a per-day average of the mentions of both hashtags and plot them across time. We'll first create proportions from the two boolean Series by the day, then we'll plot them.
matplotlib.pyplot
has been imported as plt
and ds_tweets
has been loaded for you.
Este ejercicio forma parte del curso
Analyzing Social Media Data in Python
Instrucciones del ejercicio
- Generate the mean number of tweets with the
python
column with.resample()
and.mean()
methods..resample()
takes one argument,'1 d'
, to produce daily averages. - Do the same with the
rstats
column. - Plot a line for
#python
usage withmean_python
. Usemean_python.index.day
as the x-axis. - Do the same with
mean_rstats
.
Ejercicio interactivo práctico
Prueba este ejercicio y completa el código de muestra.
# Average of python column by day
mean_python = ____[____].____(____).____()
# Average of rstats column by day
mean_rstats = ____[____].____(____).____()
# Plot mean python by day(green)/mean rstats by day(blue)
plt.plot(____, ____, color = 'green')
plt.plot(____, ____, ____)
# Add labels and show
plt.xlabel('Day'); plt.ylabel('Frequency')
plt.title('Language mentions over time')
plt.legend(('#python', '#rstats'))
plt.show()