Collapsing categories
One problem that users of a local dog adoption website have voiced is that there are too many options. As they look through the different types of dogs, they are getting lost in the overwhelming amount of choice. To simplify some of the data, you are going through each column and collapsing data if appropriate. To preserve the original data, you are going to make new updated columns in the dogs
dataset. You will start with the coat
column. The frequency table is listed here:
short 1969
medium 565
wirehaired 220
long 180
medium-long 3
Diese Übung ist Teil des Kurses
Working with Categorical Data in Python
Anleitung zur Übung
- Create a dictionary named
update_coats
to map bothwirehaired
andmedium-long
tomedium
. - Collapse the categories listed in this new dictionary and save this as a new column,
coat_collapsed
. - Convert this new column into a categorical Series.
- Print the frequency table of this new Series.
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
# Create the update_coats dictionary
____
# Create a new column, coat_collapsed
dogs["coat_collapsed"] = ____
# Convert the column to categorical
____
# Print the frequency table
print(____)