LoslegenKostenlos loslegen

Creating positional encodings

Embedding the tokens is a good start, but these embeddings still lack information about each token's position in the sequence. To remedy this, the transformer architecture makes use of positional encodings. This encodes positional information from each token into the embeddings.

You'll create a PositionalEncoding class with the following parameters:

  • d_model: the dimensionality of the input embeddings
  • max_seq_length: the maximum sequence length (or the sequence length if each sequence is the same length)

Diese Übung ist Teil des Kurses

Transformer Models with PyTorch

Kurs anzeigen

Anleitung zur Übung

  • Create a matrix of zeros of dimensions max_seq_length by d_model.
  • Perform the sine and cosine calculations on position * div_term to create the even and odd positional embedding values.
  • Ensure pe isn't a learnable parameter during training.
  • Add the transformed positional embeddings to the input token embeddings, x.

Interaktive Übung

Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.

class PositionalEncoding(nn.Module):
    def __init__(self, d_model, max_seq_length):
        super().__init__()
        # Create a matrix of zeros of dimensions max_seq_length by d_model
        pe = ____
        position = torch.arange(0, max_seq_length, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model))
        
        # Perform the sine and cosine calculations
        pe[:, 0::2] = torch.____(position * div_term)
        pe[:, 1::2] = torch.____(position * div_term)
        # Ensure pe isn't a learnable parameter during training
        self.____('____', pe.unsqueeze(0))
        
    def forward(self, x):
        # Add the positional embeddings to the token embeddings
        return ____ + ____[:, :x.size(1)]

pos_encoding_layer = PositionalEncoding(d_model=512, max_seq_length=4)
output = pos_encoding_layer(token_embeddings)
print(output.shape)
print(output[0][0][:10])
Code bearbeiten und ausführen