Designing a mask for self-attention
To ensure that the decoder can learn to predict tokens, it's important to mask future tokens when modeling the input sequences. You'll build a mask in the form of a triangular matrix of True and False values, with False values in the upper diagonal to exclude future tokens.
Diese Übung ist Teil des Kurses
Transformer Models with PyTorch
Anleitung zur Übung
- Create a Boolean matrix,
tgt_markto mask future tokens in the attention mechanism of the decoder body.
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
seq_length= 3
# Create a Boolean matrix to mask future tokens
tgt_mask = (1 - torch.____(
torch.____(1, ____, ____), diagonal=____)
).____()
print(tgt_mask)