Designing a mask for self-attention
To ensure that the decoder can learn to predict tokens, it's important to mask future tokens when modeling the input sequences. You'll build a mask in the form of a triangular matrix of True
and False
values, with False
values in the upper diagonal to exclude future tokens.
Diese Übung ist Teil des Kurses
Transformer Models with PyTorch
Anleitung zur Übung
- Create a Boolean matrix,
tgt_mark
to mask future tokens in the attention mechanism of the decoder body.
Interaktive Übung
Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.
seq_length= 3
# Create a Boolean matrix to mask future tokens
tgt_mask = (1 - torch.____(
torch.____(1, ____, ____), diagonal=____)
).____()
print(tgt_mask)