LoslegenKostenlos loslegen

Mitigating negative KL divergence

You were fine-tuning the model using RLHF techniques and noticed that the model's performance has worsened compared to the base model. You suspect this is due to negative KL divergence, so you want to set the correct generation parameters to prevent this issue.

The tokenizer has been pre-imported.

Diese Übung ist Teil des Kurses

Reinforcement Learning from Human Feedback (RLHF)

Kurs anzeigen

Anleitung zur Übung

  • Set top_k and min_length to values that help avoid KL divergence.

Interaktive Übung

Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.

generation_kwargs = {
    # Set min length and top k parameters
    ____, 
  	"top_p": 1.0,
  	"do_sample": True,  
  	"pad_token_id": tokenizer.eos_token_id, 
  	"max_new_tokens": 32}
Code bearbeiten und ausführen