Performance on multi-class classification
In this exercise, you will compute the performance metrics for models using the module sklearn.metrics
.
The model is already trained and stored in the variable model
. Also, the variables X_test
and y_true
are also loaded, together with the functions confusion_matrix()
and classification_report()
from sklearn.metrics
package.
You will first compute the confusion matrix of the model. Then, to summarize a model's performance, you will compute the precision, recall and F1-score using the classification_report()
function. In this function, you can optionally pass a list
containing the classes names (they are stored it in the news_cat
variable) to the parameter target_names
to make the report more readable.
Diese Übung ist Teil des Kurses
Recurrent Neural Networks (RNNs) for Language Modeling with Keras
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
# Use the model to predict on new data
____ = model.____(X_test)
# Choose the class with higher probability
y_pred = np.____(predicted, axis=1)