Visualizing drifting features
After ranking the univariate results, you know that drift hotel and country features are impacting the model's performance the most. In this exercise, you will look at the drift results and distribution plots of them to determine the root cause of the problem.
The results from the univariate drift calculator are stored in the uv_results variable.
Diese Übung ist Teil des Kurses
Monitoring Machine Learning in Python
Anleitung zur Übung
- Set period argument to
analysisfordrift_results. - Pass hotel and country to
column_namesfordrift_results. - Set
kindargument in.plot()method to"drift". - Do the same for
distribution_results, except for setting thekindargument in.plot()method to"distribution".
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
# Filter and create drift plots
drift_results = uv_results.filter(
period=____,
column_names=[____, ____]
).plot(kind=____)
# Filter and create distribution plots
distribution_results = uv_results.filter(
period=____,
column_names=[____, ____]
).plot(kind=____)
# Show the plots
drift_results.show()
distribution_results.show()