Performance estimation for tip prediction
In the previous exercises, you prepared a reference and analysis set for the NYC Green Taxi dataset. In this one, you will use that data to estimate the model's performance in production.
First, you must initialize the DLE algorithm with the provided parameters and then plot the results.
The reference and analysis set is already loaded and saved in the reference and analysis variables.
Additionally, nannyml is also already imported.
Diese Übung ist Teil des Kurses
Monitoring Machine Learning in Python
Anleitung zur Übung
- Initiate the DLE algorithm with daily chunk period,
tip_amountas ay_true, and MSE metric. - Fit
referenceset to the DLE estimator, estimate performance for analysis set and store the output in theresultsvariable. - Visualize the results using
plot()andshow()methods.
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
estimator = nannyml.DLE(y_pred='y_pred',
timestamp_column_name='lpep_pickup_datetime',
feature_column_names=features,
chunk_period='d',
y_true='tip_amount',
metrics=['mse'])
# Fit the reference data to the DLE algorithm
estimator.____(____)
# Estimate the performance on the analysis data
results = estimator.____(____)
# Plot and show the results
____.____().____()