Kidney disease case study III: Full pipeline
It's time to piece together all of the transforms along with an XGBClassifier to build the full pipeline!
Besides the numeric_categorical_union that you created in the previous exercise, there are two other transforms needed: the Dictifier() transform which we created for you, and the DictVectorizer(). 
After creating the pipeline, your task is to cross-validate it to see how well it performs.
Diese Übung ist Teil des Kurses
Extreme Gradient Boosting with XGBoost
Anleitung zur Übung
- Create the pipeline using the 
numeric_categorical_union,Dictifier(), andDictVectorizer(sort=False)transforms, andxgb.XGBClassifier()estimator withmax_depth=3. Name the transforms"featureunion","dictifier""vectorizer", and the estimator"clf". - Perform 3-fold cross-validation on the 
pipelineusingcross_val_score(). Pass it the pipeline,pipeline, the features,kidney_data, the outcomes,y. Also setscoringto"roc_auc"andcvto3. 
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
# Create full pipeline
pipeline = ____([
                     ("____", ____),
                     ("____", ____),
                     ("____", ____),
                     ("____", ____)
                    ])
# Perform cross-validation
cross_val_scores = ____(____, ____, ____, ____="____", ____=____)
# Print avg. AUC
print("3-fold AUC: ", np.mean(cross_val_scores))