Interpretation of model fit
The following table displays part of the summary output of the multiple linear regression model.
Call:
lm(formula = salesThisMon ~ nItems + ... + customerDuration, data = salesData)
Residuals:
Min 1Q Median 3Q Max
-322.66 -51.26 0.60 51.28 399.10
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.828e+02 1.007e+01 -28.079 < 2e-16 ***
nItems 1.470e-01 2.093e-02 7.023 2.45e-12 ***
mostFreqStoreColorado Springs -7.829e+00 4.351e+00 -1.799 0.072047 .
mostFreqStoreColumbus 5.960e-01 3.682e+00 0.162 0.871391
...
mostFreqCatBaby -3.496e+00 3.469e+00 -1.008 0.313594
mostFreqCatBakery -9.908e+00 5.451e+00 -1.818 0.069188 .
...
nCats -9.585e-01 1.956e-01 -4.900 9.90e-07 ***
nPurch 5.092e-01 1.513e-01 3.364 0.000773 ***
salesLast3Mon 3.782e-01 8.480e-03 44.604 < 2e-16 ***
daysSinceLastPurch 1.712e-01 1.526e-01 1.122 0.262022
meanItemPrice 2.253e-01 9.168e-02 2.457 0.014034 *
meanShoppingCartValue 2.584e-01 2.620e-02 9.861 < 2e-16 ***
customerDuration 5.708e-01 7.162e-03 79.707 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 77.56 on 5095 degrees of freedom
Multiple R-squared: 0.8236, Adjusted R-squared: 0.8227
F-statistic: 914.9 on 26 and 5095 DF, p-value: < 2.2e-16
Look at the model fit statistics. How much of the dependent variable's variation is explained by the explanatory variables?
This exercise is part of the course
Machine Learning for Marketing Analytics in R
Hands-on interactive exercise
Turn theory into action with one of our interactive exercises
