Interpretation of model fit

The following table displays part of the summary output of the multiple linear regression model.

Call:
lm(formula = salesThisMon ~ nItems + ... + customerDuration, data = salesData)

Residuals:
    Min      1Q  Median      3Q     Max 
-322.66  -51.26    0.60   51.28  399.10 

Coefficients:
                                Estimate Std. Error t value Pr(>|t|)    
(Intercept)                   -2.828e+02  1.007e+01 -28.079  < 2e-16 ***
nItems                         1.470e-01  2.093e-02   7.023 2.45e-12 ***
mostFreqStoreColorado Springs -7.829e+00  4.351e+00  -1.799 0.072047 .  
mostFreqStoreColumbus          5.960e-01  3.682e+00   0.162 0.871391    
...
mostFreqCatBaby               -3.496e+00  3.469e+00  -1.008 0.313594    
mostFreqCatBakery             -9.908e+00  5.451e+00  -1.818 0.069188 .  
...   
nCats                         -9.585e-01  1.956e-01  -4.900 9.90e-07 ***
nPurch                         5.092e-01  1.513e-01   3.364 0.000773 ***
salesLast3Mon                  3.782e-01  8.480e-03  44.604  < 2e-16 ***
daysSinceLastPurch             1.712e-01  1.526e-01   1.122 0.262022    
meanItemPrice                  2.253e-01  9.168e-02   2.457 0.014034 *  
meanShoppingCartValue          2.584e-01  2.620e-02   9.861  < 2e-16 ***
customerDuration               5.708e-01  7.162e-03  79.707  < 2e-16 ***

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 77.56 on 5095 degrees of freedom
Multiple R-squared:  0.8236,    Adjusted R-squared:  0.8227 
F-statistic: 914.9 on 26 and 5095 DF,  p-value: < 2.2e-16

Look at the model fit statistics. How much of the dependent variable's variation is explained by the explanatory variables?

This exercise is part of the course

Machine Learning for Marketing Analytics in R

View Course

Hands-on interactive exercise

Turn theory into action with one of our interactive exercises

Start Exercise