One of the simplest and most common examples of a random phenomenon is a coin flip: an event that is either "yes" or "no" with some probability. Here you'll learn about the binomial distribution, which describes the behavior of a combination of yes/no trials and how to predict and simulate its behavior.

View Chapter Details

2

Laws of probability

0%

In this chapter you'll learn to combine multiple probabilities, such as the probability two events both happen or that at least one happens, and confirm each with random simulations. You'll also learn some of the properties of adding and multiplying random variables.

View Chapter Details

3

Bayesian statistics

0%

Bayesian statistics is a mathematically rigorous method for updating your beliefs based on evidence. In this chapter, you'll learn to apply Bayes' theorem to draw conclusions about whether a coin is fair or biased, and back it up with simulations.

View Chapter Details

4

Related distributions

0%

So far we've been talking about the binomial distribution, but this is one of many probability distributions a random variable can take. In this chapter we'll introduce three more that are related to the binomial: the normal, the Poisson, and the geometric.

View Chapter Details

Show SlidesShow VideoTake NotesContinue Learning on MobileProvide Feedback