Slider for sales data
Analysis of trends and patterns in the global e-commerce company's data has been greatly enhanced with your date pickers. There is a further request to see what categories are driving the 'big ticket' orders.
The company has asked you to build a tool whereby they can select a value (any value, really!) and a graph will show how many sales had an order value greater than that value, split by major category.
You know this would be facilitated well by a range input.
This exercise is part of the course
Building Dashboards with Dash and Plotly
Exercise instructions
- Add a slider component called
dcc.Slider
with the identifiervalue_slider
below line16
to select a minimum order value. - Set the
value
parameter of the slider to0
below line20
. - Set the
step
parameter of the slider to50
below line22
.
Hands-on interactive exercise
Have a go at this exercise by completing this sample code.
from dash import Dash, dcc, html, Input, Output, callback
import plotly.express as px
import pandas as pd
ecom_sales = pd.read_csv('/usr/local/share/datasets/ecom_sales.csv')
logo_link = 'https://assets.datacamp.com/production/repositories/5893/datasets/fdbe0accd2581a0c505dab4b29ebb66cf72a1803/e-comlogo.png'
app = Dash()
app.layout = [
html.Img(src=logo_link, style={'margin':'30px 0px 0px 0px'}),
html.H1('Sales breakdowns'),
html.Div([
html.H2('Controls'),
html.Br(),
html.H3('Minimum OrderValue Select'),
# Add a slider input
____(id='value_slider',
min=ecom_sales['OrderValue'].min(),
max=ecom_sales['OrderValue'].max(),
# Set the starting value of the slider
____=____,
# Set the step increment of the slider
____=____,
vertical=False)],
style={'width':'350px', 'height':'350px', 'display':'inline-block', 'vertical-align':'top', 'border':'1px solid black', 'padding':'20px'}),
html.Div([
dcc.Graph(id='sales_cat'),
html.H2('Sales by Major Category', style={ 'border':'2px solid black', 'width':'400px', 'margin':'0 auto'})],
style={'width':'700px','display':'inline-block'})
]
@callback(
Output(component_id='sales_cat', component_property='figure'),
Input(component_id='value_slider', component_property='value')
)
def update_plot(min_val):
sales = ecom_sales.copy(deep=True)
if min_val:
sales = sales[sales['OrderValue'] >= min_val]
ecom_bar_major_cat = sales.groupby('Major Category')['OrderValue'].size().reset_index(name='Total Sales Volume')
bar_fig_major_cat = px.bar(
title=f'Sales with order value: {min_val}',data_frame=ecom_bar_major_cat, orientation='h',
x='Total Sales Volume', y='Major Category')
return bar_fig_major_cat
if __name__ == '__main__':
app.run(debug=True)