Get startedGet started for free

Date picker for sales data

The interactive sales dashboard you created was a smash hit; however, it is vital for the sales team to be able to monitor daily sales to analyze patterns and trends. You have been asked if you can extend your work to include a filter to view sales by major category on a particular date?

This sounds like a job for a date picker!

This exercise is part of the course

Building Dashboards with Dash and Plotly

View Course

Exercise instructions

  • Create a date picker component called dcc.DatePickerSingle with the identifier sale_date below line 18.
  • Set the date parameter to April 11, 2011 below line 23 to show this as the initial visible date.

Hands-on interactive exercise

Have a go at this exercise by completing this sample code.

from dash import Dash, dcc, html, Input, Output, callback
import plotly.express as px
import pandas as pd
from datetime import datetime, date
ecom_sales = pd.read_csv('/usr/local/share/datasets/ecom_sales.csv')
logo_link = 'https://assets.datacamp.com/production/repositories/5893/datasets/fdbe0accd2581a0c505dab4b29ebb66cf72a1803/e-comlogo.png'
ecom_sales['InvoiceDate'] = pd.to_datetime(ecom_sales['InvoiceDate'])

app = Dash()

app.layout = [
    html.Img(src=logo_link, style={'margin': '30px 0px 0px 0px'}),
    html.H1('Sales breakdowns'),
    html.Div([
		html.H2('Controls'),
        html.Br(),
        html.H3('Sale Date Select'),
        # Create a date picker with identifier
        ____(
            id='____',
            min_date_allowed=ecom_sales['InvoiceDate'].min(),
            max_date_allowed=ecom_sales['InvoiceDate'].max(),
            # Set the initial visible date
            date=date(____),
            initial_visible_month=date(2011, 4, 11),
            style={'width': '200px', 'margin': '0 auto'})],
        style={'width': '350px', 'height': '350px', 'display': 'inline-block', 'vertical-align': 'top', 'border': '1px solid black', 'padding': '20px'}),
    html.Div([
        dcc.Graph(id='sales_cat'),
        html.H2('Daily Sales by Major Category', style={'border': '2px solid black', 'width': '400px', 'margin': '0 auto'})], 
    	style={'width': '700px', 'display': 'inline-block'})
]

@callback(
    Output(component_id='sales_cat', component_property='figure'),
    Input(component_id='sale_date', component_property='date')
)
def update_plot(input_date):
    sales = ecom_sales.copy(deep=True)
    if input_date:
        sales = sales[sales['InvoiceDate'] == input_date]
    ecom_bar_major_cat = sales.groupby('Major Category')['OrderValue'].agg('sum').reset_index(name='Total Sales ($)')
    bar_fig_major_cat = px.bar(
        title=f'Sales on: {input_date}', data_frame=ecom_bar_major_cat, orientation='h',
        x='Total Sales ($)', y='Major Category')
    return bar_fig_major_cat

if __name__ == '__main__':
    app.run(debug=True)
Edit and Run Code