Get startedGet started for free

Define, compile, & simulate the regression model

Upon observing the relationship between weight \(Y\)i and height \(X\)i for the 507 subjects \(i\) in the bdims data set, you can update your posterior model of this relationship. To build your posterior, you must combine your insights from the likelihood and priors:

  • likelihood: \(Y\)i \(\sim N(m\)i, \(s^2)\) where \(m\)i \(= a + b X\)i
  • priors: \(a \sim N(0, 200^2)\), \(b \sim N(1, 0.5^2)\) and \(s \sim Unif(0, 20)\)

In this series of exercises, you'll define, compile, and simulate your Bayesian regression posterior. The bdims data are in your work space.

This exercise is part of the course

Bayesian Modeling with RJAGS

View Course

Hands-on interactive exercise

Have a go at this exercise by completing this sample code.

# DEFINE the model    
weight_model <- ___
Edit and Run Code