BaşlayınÜcretsiz Başlayın

Training and testing the "fake news" model with TfidfVectorizer

Now that you have evaluated the model using the CountVectorizer, you'll do the same using the TfidfVectorizer with a Naive Bayes model.

The training and test sets have been created, and tfidf_vectorizer, tfidf_train, and tfidf_test have been computed. Additionally, MultinomialNB and metrics have been imported from, respectively, sklearn.naive_bayes and sklearn.

Bu egzersiz

Introduction to Natural Language Processing in Python

kursunun bir parçasıdır
Kursu Görüntüle

Egzersiz talimatları

  • Instantiate a MultinomialNB classifier called nb_classifier.
  • Fit the classifier to the training data.
  • Compute the predicted tags for the test data.
  • Calculate and print the accuracy score of the classifier.
  • Compute the confusion matrix. As in the previous exercise, specify the keyword argument labels=['FAKE', 'REAL'] so that the resulting confusion matrix is easier to read.

Uygulamalı interaktif egzersiz

Bu örnek kodu tamamlayarak bu egzersizi bitirin.

# Create a Multinomial Naive Bayes classifier: nb_classifier
nb_classifier = ____

# Fit the classifier to the training data
____

# Create the predicted tags: pred
pred = ____

# Calculate the accuracy score: score
score = ____
print(score)

# Calculate the confusion matrix: cm
cm = ____
print(cm)
Kodu Düzenle ve Çalıştır