Defining the schema
Let's start by defining the expected schema for data validation. This is a critical step in ensuring data quality throughout the ETL pipeline.
You'll use the pointblank library to define the schema structure.
The dataset has already been loaded for you as ts.
Bu egzersiz
Designing Forecasting Pipelines for Production
kursunun bir parçasıdırEgzersiz talimatları
- Start by importing
pointblank. - Define the schema using the right method.
- Set the
respondentcolumn toobjecttype andvaluecolumn tofloat64type.
Uygulamalı interaktif egzersiz
Bu örnek kodu tamamlayarak bu egzersizi bitirin.
# Import the required library
import ____ as ____
# Define the schema and set columns
table_schema = pb.____(
columns=[
("period", "datetime64[ns]"),
("respondent", "____"),
("respondent-name", "object"),
("type", "object"),
("type-name", "object"),
("value", "____"),
("value-units", "object")])
print(table_schema)