BaşlayınÜcretsiz Başlayın

Defining the schema

Let's start by defining the expected schema for data validation. This is a critical step in ensuring data quality throughout the ETL pipeline.

You'll use the pointblank library to define the schema structure.

The dataset has already been loaded for you as ts.

Bu egzersiz

Designing Forecasting Pipelines for Production

kursunun bir parçasıdır
Kursu Görüntüle

Egzersiz talimatları

  • Start by importing pointblank.
  • Define the schema using the right method.
  • Set the respondent column to object type and value column to float64 type.

Uygulamalı interaktif egzersiz

Bu örnek kodu tamamlayarak bu egzersizi bitirin.

# Import the required library
import ____ as ____

# Define the schema and set columns
table_schema =  pb.____(
    columns=[
        ("period", "datetime64[ns]"),   
        ("respondent", "____"),
        ("respondent-name", "object"),
        ("type", "object"),
        ("type-name", "object"),
        ("value", "____"),
        ("value-units", "object")])

print(table_schema)
Kodu Düzenle ve Çalıştır