BaşlayınÜcretsiz Başlayın

Fitting the model

Now that your model and parameters are ready, you'll initialize MLForecast and fit it to the time series data.

The model and params variables from the previous exercise are available, along with the ts DataFrame.

Bu egzersiz

Designing Forecasting Pipelines for Production

kursunun bir parçasıdır
Kursu Görüntüle

Egzersiz talimatları

  • Create an MLForecast instance named mlf.
  • Set the freq, lags, and date_features arguments using the respective keys from the params dictionary.
  • Fit the model to the ts DataFrame.

Uygulamalı interaktif egzersiz

Bu örnek kodu tamamlayarak bu egzersizi bitirin.

# Create an MLForecast instance
mlf = ____(
    # Set the freq, lags, and date_features arguments
  	models=model,
    freq=params["____"],
    lags=params["____"],
    date_features=params["____"]
)

# Fit mlf to the time series data
mlf.fit(____)
Kodu Düzenle ve Çalıştır