BaşlayınÜcretsiz Başlayın

Defining the forecasting pipeline

Now you'll define the forecasting model and parameters for the MLForecast pipeline. This step prepares the model configuration that will be used for time series forecasting in the pipeline.

Bu egzersiz

Designing Forecasting Pipelines for Production

kursunun bir parçasıdır
Kursu Görüntüle

Egzersiz talimatları

  • Import LGBMRegressor from lightgbm.
  • Instantiate a LGBMRegressor model with 100 estimators and a learning rate of 0.05.
  • Create a dictionary named params that includes the frequency ("h"), lags (1-24), and date features ("month", "day", "dayofweek", "week", and "hour").

Uygulamalı interaktif egzersiz

Bu örnek kodu tamamlayarak bu egzersizi bitirin.

# Import LGBMRegressor from lightgbm
from ____ import ____

# Instantiate the model
model = ____(n_estimators=____, learning_rate=____)

# Set the model parameters
params = {
  "freq": "____",
  "lags": list(range(____, ____)),
  "date_features": ["month", "day", "____", "____", "hour"]
}
Kodu Düzenle ve Çalıştır