BaşlayınÜcretsiz Başlayın

Searching experiment results

MLflow makes it easy to query the results of your experiments, helping you track model performance and hyperparameters.

Let's examine your most recent experiment, finding the model with the lowest Mean Absolute Percentage Error (MAPE).

Bu egzersiz

Designing Forecasting Pipelines for Production

kursunun bir parçasıdır
Kursu Görüntüle

Egzersiz talimatları

  • Search MLflow runs by the experiment_name.
  • Get the single best-performing model from all_results based on metrics.mape.
  • Print the subset of best_mape_model.

Uygulamalı interaktif egzersiz

Bu örnek kodu tamamlayarak bu egzersizi bitirin.

experiment_name = "hyperparameter_tuning"

# Search MLflow runs
all_results = mlflow.____(experiment_names=[____])

# Filter for the model with the best MAPE score
best_mape_model = all_results.____("metrics.mape").head(____)

# Print the model
print(____[["params.model_name", "metrics.mape"]])
Kodu Düzenle ve Çalıştır