BaşlayınÜcretsiz Başlayın

Logging tuned models

You have been experimenting with different model hyperparameters and need to log your latest round of experiment results to MLflow, let's do it!

Bu egzersiz

Designing Forecasting Pipelines for Production

kursunun bir parçasıdır
Kursu Görüntüle

Egzersiz talimatları

  • Set the experiment name as "hyperparameter_tuning".
  • Loop over the index and rows of df.
  • Start an MLflow run.

Uygulamalı interaktif egzersiz

Bu örnek kodu tamamlayarak bu egzersizi bitirin.

# Set the experiment name
experiment_name = "____"
experiment_id = mlflow.create_experiment(experiment_name)

# Loop through the DataFrame
for idx, row in df.____():
  # Start a run
  with mlflow.____(experiment_id=____):
    model_params = ml_models[row["model_label"]].get_params()
    model_params["model_name"] = row["model_name"]
    model_params["model_label"] = row["model_label"]
    model_params["partition"] = row["partition"]
    model_params["lags"] = list(range(1, 24))
    model_params["date_features"] = ["month", "day", "dayofweek", "week", "hour"]
    mlflow.log_params(model_params)
    mlflow.log_metric("mape", row["mape"])
    mlflow.log_metric("rmse", row["rmse"])
Kodu Düzenle ve Çalıştır