Shakespearean language preprocessing pipeline
Over at PyBooks, the team wants to transform a vast library of Shakespearean text data for further analysis. The most efficient way to do this is with a text processing pipeline, starting with the preprocessing steps.
The following have been loaded for you:
torch, nltk, stopwords, PorterStemmer, get_tokenizer.
The Shakespearean text data is saved as shakespeare and the sentences have already been extracted.
Bu egzersiz
Deep Learning for Text with PyTorch
kursunun bir parçasıdırUygulamalı interaktif egzersiz
Bu örnek kodu tamamlayarak bu egzersizi bitirin.
# Create a list of stopwords
stop_words = set(____(____))