ComeçarComece de graça

Implementing multi-head attention

Before you dive in and begin building your own MultiHeadAttention class, you'll try out using the class to see how it transforms the query, key, and value matrices. Recall that these matrices are generated by projecting the input embeddings using linear transformations with learned weights.

query, key, and value matrices have already been created for you, and the MultiHeadAttention has been defined for you.

Este exercício faz parte do curso

Transformer Models with PyTorch

Ver curso

Instruções do exercício

  • Define the attention parameters for eight attention heads and input embeddings with a dimensionality of 512.
  • Create an instance of the MultiHeadAttention class using the defined parameters.
  • Pass the query, key, and value matrices through the multihead_attn mechanism.

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

# Define attention parameters
d_model = ____
num_heads = ____

# Instantiate a MultiHeadAttention instance
multihead_attn = ____

# Pass the query, key, and value matrices through the mechanism
output = ____
print(output.shape)
Editar e executar o código