Este exercício faz parte do curso
Neste capítulo, será feita uma introdução aos problemas de classificação e você aprenderá a resolvê-los usando técnicas de aprendizado supervisionado. Você vai aprender a dividir os dados em conjuntos de treinamento e teste, ajustar um modelo, fazer previsões e avaliar a precisão. Você descobrirá a relação entre complexidade e desempenho do modelo, aplicando o que aprendeu a um conjunto de dados de cancelamento de assinaturas, no qual classificará a situação dos cancelamentos de clientes de uma empresa de telecomunicações.
Este capítulo introduz o conceito de regressão, e você vai criar modelos para prever valores de vendas usando um conjunto de dados sobre gastos com publicidade. Você aprenderá como funcionam a regressão linear e métricas de desempenho comuns, como R-quadrado e raiz do erro quadrático médio. Você vai fazer a validação cruzada com k subgrupos (k folds) e aplicar a regularização a modelos de regressão para reduzir o risco de sobreajuste.
Depois de treinar os modelos, agora você aprenderá a avaliá-los. Neste capítulo, são apresentadas várias métricas e uma técnica de visualização para analisar o desempenho do modelo de classificação usando o scikit-learn. Você também aprenderá a otimizar modelos de classificação e regressão por meio do ajuste de hiperparâmetros.
Saiba como imputar valores faltantes, converter dados categóricos em valores numéricos, fazer o escalonamento de dados, avaliar vários modelos de aprendizado supervisionado de maneira simultânea e criar pipelines para otimizar o fluxo de trabalho!
Exercício atual