Aggregations with rowwise()
rowwise()
can be a handy tool in your dplyr
programming toolbox when combined with c_across()
. Together, they allow you to perform calculations across different variables on each row. For example, this can be useful for counting missing values across each row for chosen variables.
Este exercício faz parte do curso
Programming with dplyr
Instruções do exercício
- Set the pipeline up for calculations across each row.
- Create a column
num_missing
that contains each row's number of missing values in the columnsgdp_in_billions_of_usd
through to the last column inimf_data
. - Sort the results by number of missing entries in decreasing order.
Exercício interativo prático
Experimente este exercício completando este código de exemplo.
imf_data %>%
# Specify that calculations are done across the row
___() %>%
# Count missings in gdp_in_billions_of_usd to last column
mutate(num_missing = sum(is.na(
___(___:___))
)) %>%
select(country:year, num_missing) %>%
# Arrange by descending number of missing entries
___