Instant and powdered coffee
In this exercise, you will analyze the prices of instant and powdered coffee in Indian markets. Grouped histograms are excellent tools for comparing different distributions side by side, mainly when simple statistical measures fall short of providing a comprehensive description of the data.
The DataFrames package has been imported for your convenience, and the coffee DataFrame is readily available for analysis.
Este exercício faz parte do curso
Introduction to Data Visualization with Julia
Instruções do exercício
- Import the
StatsPlotspackage - Create a grouped histogram using the
Retail Pricecolumn from thecoffeeDataFrame. - Group the histogram by the
Varietycolumn - Select
sandybrownandbrownfor the colors in that specific order.
Exercício interativo prático
Experimente este exercício completando este código de exemplo.
# import StatsPlots
____ ____
# Create grouped histogram
____(
coffee."____",
# Define the group
____=coffee.____,
# Choose colors
____=[____ ____]
)
title!("Cofee Prices in India")
xlabel!("Price (Rupees)")
ylabel!("Frequency")