Using AutoClasses
You’ve seen how tokenizers work and explored their role in preparing text for models. Now, let’s take it a step further by combining AutoModels and AutoTokenizers with the pipeline() function. It's a nice balance of control and convenience.
Continue with the sentiment analysis task and combine AutoClasses with the pipeline module.
AutoModelForSequenceClassification, AutoTokenizer and pipeline from the transformers library have already been imported for you.
Deze oefening maakt deel uit van de cursus
Working with Hugging Face
Oefeninstructies
- Download the model and tokenizer and save as
my_modelandmy_tokenizer, respectively. - Create the pipeline and save as
my_pipeline. - Predict the output using
my_pipelineand save asoutput.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Download the model and tokenizer
my_model = ____.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
my_tokenizer = ____.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
# Create the pipeline
my_pipeline = pipeline(task="sentiment-analysis", ____=____, ____=____)
# Predict the sentiment
output = ____("This course is pretty good, I guess.")
print(f"Sentiment using AutoClasses: {output[0]['label']}")