Aan de slagGa gratis aan de slag

Correlated data in nature

You are given an array grains giving the width and length of samples of grain. You suspect that width and length will be correlated. To confirm this, make a scatter plot of width vs length and measure their Pearson correlation.

Deze oefening maakt deel uit van de cursus

Unsupervised Learning in Python

Cursus bekijken

Oefeninstructies

  • Import:
    • matplotlib.pyplot as plt.
    • pearsonr from scipy.stats.
  • Assign column 0 of grains to width and column 1 of grains to length.
  • Make a scatter plot with width on the x-axis and length on the y-axis.
  • Use the pearsonr() function to calculate the Pearson correlation of width and length.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Perform the necessary imports
____
____

# Assign the 0th column of grains: width
width = ____

# Assign the 1st column of grains: length
length = ____

# Scatter plot width vs length
plt.scatter(____, ____)
plt.axis('equal')
plt.show()

# Calculate the Pearson correlation
correlation, pvalue = ____

# Display the correlation
print(correlation)
Code bewerken en uitvoeren