Implementing multi-head attention
Before you dive in and begin building your own MultiHeadAttention class, you'll try out using the class to see how it transforms the query, key, and value matrices. Recall that these matrices are generated by projecting the input embeddings using linear transformations with learned weights.
query, key, and value matrices have already been created for you, and the MultiHeadAttention has been defined for you.
Deze oefening maakt deel uit van de cursus
Transformer Models with PyTorch
Oefeninstructies
- Define the attention parameters for eight attention heads and input embeddings with a dimensionality of
512. - Create an instance of the
MultiHeadAttentionclass using the defined parameters. - Pass the
query,key, andvaluematrices through themultihead_attnmechanism.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Define attention parameters
d_model = ____
num_heads = ____
# Instantiate a MultiHeadAttention instance
multihead_attn = ____
# Pass the query, key, and value matrices through the mechanism
output = ____
print(output.shape)