Aan de slagGa gratis aan de slag

Implementing the training step

In this exercise, you'll implement the training_step() method in a PyTorch Lightning module designed for an image classification task. Your implementation should unpack a batch of images and labels, compute the model predictions via the forward pass, calculate the cross entropy loss, and log the training loss.

Deze oefening maakt deel uit van de cursus

Scalable AI Models with PyTorch Lightning

Cursus bekijken

Oefeninstructies

  • Ensure that you compute predictions using the forward pass.
  • Calculate the cross entropy loss.
  • Log the training loss.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

from torch.nn.functional import cross_entropy

def training_step(self, batch, batch_idx):
    x, y = batch
    # Ensure that you compute predictions using the forward pass
    y_hat = ____
    # Calculate the cross entropy loss
    loss = ____
    # Log the loss
    self.____("train_loss", loss)
    return loss
Code bewerken en uitvoeren