Aan de slagGa gratis aan de slag

Anomaly score

Your visualization suggested that thyroid disease could be detected from anomalous hormone measurements.

In this exercise you'll use an isolation forest to generate an anomaly score for thyroid levels, and compare the resulting score against the true disease status.

Deze oefening maakt deel uit van de cursus

Introduction to Anomaly Detection in R

Cursus bekijken

Oefeninstructies

  • Fit an isolation forest to the thyroid hormone measurements.
  • Generate anomaly scores for the thyroid data and append the result to thyroid as the new column iso_score.
  • Use the boxplot() function to compare the score distribution for patients with and without thyroid disease, using the label column.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Fit isolation forest
thyroid_forest <- iForest(___, ___ = 200, phi = 100)

# Anomaly score 
thyroid$iso_score <- predict(thyroid_forest, ___)

# Boxplot of the anomaly score against labels
boxplot(___ ~ ___, ___, col = "olivedrab4")
Code bewerken en uitvoeren