Aan de slagGa gratis aan de slag

Evaluating model quality

It's now time to begin evaluating model quality.

Here, you will compare the RMSE and MAE of a cross-validated XGBoost model on the Ames housing data. As in previous exercises, all necessary modules have been pre-loaded and the data is available in the DataFrame df.

Deze oefening maakt deel uit van de cursus

Extreme Gradient Boosting with XGBoost

Cursus bekijken

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Create the DMatrix: housing_dmatrix
housing_dmatrix = xgb.DMatrix(data=X, label=y)

# Create the parameter dictionary: params
params = {"objective":"reg:squarederror", "max_depth":4}

# Perform cross-validation: cv_results
cv_results = ____(dtrain=____, params=____, nfold=____, num_boost_round=____, metrics=____, as_pandas=True, seed=123)

# Print cv_results
print(cv_results)

# Extract and print final boosting round metric
print((cv_results["____"]).tail(1))
Code bewerken en uitvoeren