Aan de slagGa gratis aan de slag

PDF document loaders

To begin implementing Retrieval Augmented Generation (RAG), you'll first need to load the documents that the model will access. These documents can come from a variety of sources, and LangChain supports document loaders for many of them.

In this exercise, you'll use a document loader to load a PDF document containing the paper, RAG VS Fine-Tuning: Pipelines, Tradeoffs, and a Case Study on Agriculture by Balaguer et al. (2024).

Note: pypdf, a dependency for loading PDF documents in LangChain, has already been installed for you.

Deze oefening maakt deel uit van de cursus

Developing LLM Applications with LangChain

Cursus bekijken

Oefeninstructies

  • Import the appropriate class for loading PDF documents in LangChain.
  • Create a document loader for the 'rag_vs_fine_tuning.pdf' document, which is available in the current directory.
  • Load the document into memory to view the contents of the first document, or page.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Import library
from langchain_community.document_loaders import ____

# Create a document loader for rag_vs_fine_tuning.pdf
loader = ____

# Load the document
data = ____
print(data[0])
Code bewerken en uitvoeren