Aan de slagGa gratis aan de slag

Sharing model parameters with monitoring

You would like to add a health check endpoint that provides model parameters to your penguin classification API.

The required packages (FastAPI and joblib) have been already imported.

Deze oefening maakt deel uit van de cursus

Deploying AI into Production with FastAPI

Cursus bekijken

Oefeninstructies

  • Add a GET endpoint at the typical location for health checks.
  • Capture the model parameters from the sklearn model using the get_params method.
  • Include the model parameters in the response as the value to key params.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

model = joblib.load(
    'penguin_classifier.pkl'
)
app = FastAPI()

# Create health check endpoint
@app.get("____")
async def get_health():
    # Capture the model params
    params = ____.get_params()
    return {"status": "OK",
            # Include model params in response
            "params": ____}
Code bewerken en uitvoeren