Aan de slagGa gratis aan de slag

Shakespearean language encoder

With the preprocessed Shakespearean text at your fingertips, you now need to encode it into a numerical representation. You will need to define the encoding steps before putting the pipeline together. To better handle large amounts of data and efficiently perform the encoding, you will use PyTorch's Dataset and DataLoader for batching and shuffling the data.

The following has been loaded for you: torch, nltk, stopwords, PorterStemmer, get_tokenizer, CountVectorizer, Dataset, DataLoader, and preprocess_sentences.

The processed_shakespeare from the Shakespearean text is also available to you.

Deze oefening maakt deel uit van de cursus

Deep Learning for Text with PyTorch

Cursus bekijken

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Define your Dataset class
class ____(Dataset):
    def __init__(self, data):
        self.data = ____
    def __len__(self):
        return len(self.data)
    def __getitem__(self, idx):
        return self.____[____]
Code bewerken en uitvoeren