Aan de slagGa gratis aan de slag

Linear regression on the United States

A linear regression is a model that lets us examine how one variable changes with respect to another by fitting a best fit line. It is done with the lm() function in R.

Here, you'll fit a linear regression to just the percentage of "yes" votes from the United States.

Deze oefening maakt deel uit van de cursus

Case Study: Exploratory Data Analysis in R

Cursus bekijken

Oefeninstructies

  • Print the US_by_year data to the console.
  • Using just the US data in US_by_year, use lm() to run a linear regression predicting percent_yes from year. Save this to a variable US_fit.
  • Summarize US_fit using the summary() function.

Praktische interactieve oefening

Probeer deze oefening eens door deze voorbeeldcode in te vullen.

# Percentage of yes votes from the US by year: US_by_year
US_by_year <- by_year_country %>%
  filter(country == "United States")

# Print the US_by_year data


# Perform a linear regression of percent_yes by year: US_fit


# Perform summary() on the US_fit object
Code bewerken en uitvoeren