IniziaInizia gratis

NMF applied to Wikipedia articles

In the video, you saw NMF applied to transform a toy word-frequency array. Now it's your turn to apply NMF, this time using the tf-idf word-frequency array of Wikipedia articles, given as a csr matrix articles. Here, fit the model and transform the articles. In the next exercise, you'll explore the result.

Questo esercizio fa parte del corso

Unsupervised Learning in Python

Visualizza il corso

Istruzioni dell'esercizio

  • Import NMF from sklearn.decomposition.
  • Create an NMF instance called model with 6 components.
  • Fit the model to the word count data articles.
  • Use the .transform() method of model to transform articles, and assign the result to nmf_features.
  • Print nmf_features to get a first idea what it looks like (.round(2) rounds the entries to 2 decimal places.)

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Import NMF
____

# Create an NMF instance: model
model = ____

# Fit the model to articles
____

# Transform the articles: nmf_features
nmf_features = ____

# Print the NMF features
print(nmf_features.round(2))
Modifica ed esegui il codice