IniziaInizia gratis

K-means for feedback clustering

You have a dataset of feedback responses, and you've used a GPT model to calculate confidence scores for each response. To identify unusual or outlier feedback, you apply k-means clustering to the low-confidence responses.

The KMeans algorithm, reviews and confidences variables, and np library have been preloaded.

Questo esercizio fa parte del corso

Reinforcement Learning from Human Feedback (RLHF)

Visualizza il corso

Istruzioni dell'esercizio

  • Initialize the k-means algorithm. Set the random_state to 42 for code reproducibility.
  • Calculate distances from cluster centers to identify outliers as the difference between data and the corresponding cluster centers.

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

def detect_anomalies(data, n_clusters=3):
    # Initialize k-means
    ____
    clusters = kmeans.fit_predict(data)
    centers = kmeans.cluster_centers_

    # Calculate distances from cluster centers
    ____
    return distances
  
anomalies = detect_anomalies(confidences)
print(anomalies)
Modifica ed esegui il codice