IniziaInizia gratis

CV fine-tuning: trainer configuration

Now that you have prepared the dataset and adapted a pretrained model to the new classes, it is time to configure your trainer.

The TrainingArguments and Trainer have been loaded from the transformers library. The model (model) and dataset (dataset) have been loaded as you previously configured them.

Questo esercizio fa parte del corso

Multi-Modal Models with Hugging Face

Visualizza il corso

Istruzioni dell'esercizio

  • Adjust the learning rate to 6e-5.
  • Provide the model, training data, and test data to the Trainer instance.

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

training_args = TrainingArguments(
    output_dir="dataset_finetune",
    # Adjust the learning rate
    ____,
    gradient_accumulation_steps=4,
    num_train_epochs=3,
    push_to_hub=False
)

trainer = Trainer(
    # Provide the model and datasets
    model=____,
    args=training_args,
    data_collator=data_collator,
    train_dataset=____,
    eval_dataset=____,
    processing_class=image_processor,
    compute_metrics=compute_metrics,
)
Modifica ed esegui il codice