Querying with multiple texts
In many cases, you'll want to query the vector database using multiple query texts. Recall that these query texts are embedded using the same embedding function as when the documents were added.
In this exercise, you'll use the documents from two IDs in the netflix_titles collection to query the rest of the collection, returning the most similar results as recommendations.
The netflix_titles collection is still available to use, and OpenAIEmbeddingFunction() has been imported.
Questo esercizio fa parte del corso
Introduction to Embeddings with the OpenAI API
Istruzioni dell'esercizio
- Retrieve the documents from the collection for the IDs in
reference_ids. - Query the collection using
reference_textsto return three results for each query.
Esercizio pratico interattivo
Prova a risolvere questo esercizio completando il codice di esempio.
collection = client.get_collection(
name="netflix_titles",
embedding_function=OpenAIEmbeddingFunction(model_name="text-embedding-3-small", api_key="")
)
reference_ids = ['s999', 's1000']
# Retrieve the documents for the reference_ids
reference_texts = ____
# Query using reference_texts
result = ____
print(result['documents'])